文献速递基于深度学习的超声图像前列腺

文章题目:Accurateandrobustdeeplearning-basedsegmentationoftheprostateclinicaltargetvolumeinultrasoundimages

研究人员:DavoodKarimietal.

研究单位:DepartmentofElectricalandComputerEngineering,UniversityofBritishColumbia,Vancouver,BC,Canada

期刊名称:MedicalImageAnalysis

影响因子与分区:11.(Q2)

01

核心亮点

ComparedtoothertraditionalandCNN-basedmethods,ourmethodachievedsignificantlybetterresultsintermsofHD,whichmeasureslargestsegmentationerror.(与其他传统的和基于CNN的方法相比,我们的方法在HD方面取得了更好的效果,HD是衡量最大分割误差的指标。)

Moreover,ourmethodalsosubstantiallyreducedthemaximumerrorsonthepopulationoftestimages.(此外,我们的方法还大大减少了测试图像总体上的最大误差。)

02

思路与方法

基于超声图像建立一种在近距离放射治疗的经直肠超声(TRUS)图像中对前列腺临床靶体积进行准确而稳健的自动分割的方法,并测试该方法的分割精度。

03

摘要

Thegoalofthisworkwastodevelopamethodforaccurateandrobustautomaticsegmentationoftheprostateclinicaltargetvolumeintransrectalultrasound(TRUS)imagesforbrachytherapy.Theseimagescanbedifficulttosegmentbecauseofweakorinsufficientlandmarksorstrongartifacts.Wedeviseamethod,basedonconvolutionalneuralnetworks(CNNs),thatproducesaccuratesegmentationsoneasyanddifficultimagesalike.Weproposetwostrategiestoachieveimprovedsegmentationaccuracyondifficultimages.First,forCNNtrainingweadoptanadaptivesamplingstrategy,wherebythetrainingprocessisencouragedtopaymoreattentiontoimagesthataredifficulttosegment.Secondly,wetrainaCNNensembleandusethedisagreementamongthisensembletoidentifyuncertainsegmentationsandtoestimateasegmentationuncertaintymap.Weimproveuncertainsegmentationsbyutilizingthepriorshapeinformationintheformofastatisticalshapemodel.OurmethodachievesHausdorffdistanceof2.7±2.3mmandDicescoreof93.9±3.5%.Comparisonswithseveral

转载请注明:http://www.shijichaoguyj.com/wxjs/9131.html

网站简介| 发布优势| 服务条款| 隐私保护| 广告合作| 网站地图| 版权申明

当前时间: